Ciri-ciri Sinaran latar belakang gelombang mikro kosmik

Spektrum latar gelombang mikro kosmik yang diukur oleh peralatan FIRAS pada satelit COBE ialah spektrum jasad hitam tertepat diukur secara semula jadi.[3]

Sinaran latar belakang gelombang mikro kosmik merupakan pancaran tenaga terma jasad hitam seragam yang datang dari segenap sudut angkasa. Sinarannya adalah isotropik kepada, secara kasarnya, satu per 100,000: ubahan punca min kuasa duanya hanya sebanyak 18 μK,[4] selepas anisotropi dwikutub ditolak daripada anjakan Dopplernya. Kesan Doppler itu berlaku disebabkan oleh halaju khusus Bumi relatif kepada rangka rehat kosmik segerak sedang Bumi bergerak pada halaju 627 km/s kearah buruj Virgo.

Dalam model Letupan Besar bagi pembentukan alam semesta, Kosmologi Penggelembungan meramalkan bahawa selepas kira-kira 10−37 saat[5] alam semesta baru melalui pertumbuhan eksponen yang melicinkan hampir semua ketakhomogenan. Ketakhomogenan yang selebihnya adalah disebabkan oleh turun naik kuantum dalam medan inflaton yang menyebabkan kejadian penggelembungan itu tadi. [6] Selepas 10−6 saat, alam semesta awal terdiri daripada foton, elektron, dan baryon dalam bentuk plasma panas yang saling tindak antara satu sama lain. Sedang alam semesta berkembang, penyejukan adiabatik menyebabkan plasma kehilangan tenaga lantas membolehkan elektron bergabung dengan proton lalu membentuk atom hidrogen. Penggabungan semula ini berlaku apabila suhu berada dalam sekitar 3000 K atau semasa alam semesta sudah berusia kira-kira 379,000  tahun[7] Pada tahap ini, foton tidak lagi bertindak balas dengan atom yang kini neutral secara elektrik dan mula untuk mengalir bebas melalui angkasa, lalu berlakulah penyahgandingan jisim dan terhasillah sinaran.[8]

Suhu warna foton yang dinyahgandingkan tadi terus berkurangan sejak itu; kini telah turun kepada 2.725 K dan akan kekal merosot sambil alam semesta berkembang. Menurut model Letupan Besar, sinaran dari langit yang kita ukur hari ini datang dari permukaan sfera yang dipanggil permukaan penyerakan terakhir. Ia mewakili set lokasi dalam angkasa lepas di mana peristiwa penyahgandingan dipercayai telah berlaku[9] dan pada satu titik masa di mana foton dari jarak itu baru sahaja sampai kepada pemerhati. Kebanyakan tenaga sinaran dalam alam semesta ini berada dalam latar belakang gelombang mikro kosmik, [10] membentuk sebahagian kecil daripada kira-kira 6995600000000000000♠6×10−5 jumlah ketumpatan alam semesta.[11]

Dua kejayaan besar teori Letupan Besar ialah ramalan spektrum jasad hitam yang hampir sempurna dan ramalan terperinci bagi anisotropi dalam latar belakang gelombang mikro kosmik. Spektrum CMB telah menjadi spektrum jasad hitam yang paling tepat diukur dalam alam semula jadi.[3]

Rujukan

WikiPedia: Sinaran latar belakang gelombang mikro kosmik http://www.ifi.unicamp.br/~assis/Apeiron-V2-p79-84... http://www.astronomycast.com/cosmology/the-big-ban... http://books.google.com/?id=5awirwgmvAoC&pg=PA40 http://books.google.com/?id=J2KCisZsWZ0C&pg=RA1-PA... http://books.google.com/?id=f6p0AFgzeMsC&pg=PA135 http://www.berkeley.edu/news/media/releases/2006/1... http://adsabs.harvard.edu/abs/1946PhRv...70..340D http://adsabs.harvard.edu/abs/1946RScI...17..268D http://adsabs.harvard.edu/abs/1948Natur.162..680G http://adsabs.harvard.edu/abs/1948PhRv...74..505G